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ABSTRACT

Rice developed a universal noiseless coding structure that provides efficient performance

over an extremely broad range of source entropy. This is accomplished by adaptively se-

lecting the best of several easily implemented variable length coding algorithms. Variations

of such noiseless coders have been used in many NASA applications. Custom VLSI coder

and decoder modules capable of processing over 20 million samples per second are currently

under development.

In this study, the first of the code options used in this module development is shown to be

equivalent to a class of Huffman code under the Humblet condition, for source symbol sets

having a Laplacian distribution. Except for the default option, other options are shown to

be equivalent to the Huffman codes of a modified Laplacian symbol set, at specified symbol

entropy values. Simulation results are obtained on actual aerial imagery, and they confirm

the optimality of the scheme. On sources having Gaussian or Poisson distributions, coder

performance is also projected through analysis and simulation.
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ON THE OPTIMALITY OF CODE OPTIONS

FOR A UNIVERSAL NOISELESS CODER

I INTRODUCTION

Information preserving source coding, also known as noiseless data compression, has

been studied for several decades. This type of coding is especially applicable to the coding

of computer files and medical imaging or scientific data, when high fidelity of the data

is desirable. The mostly widely known technique, undoubtedly, is the Huffman algorithm

which generates variable length codes optimal for fixed known source distributions [1]. A

number of papers addressing the properties or subclasses of this coder have been published

[2-8].

But most real applications produce source symbol distributions which vary, so the op-

timality of an individual Huffman code is often insignificant because the optimized code

will only exhibit efficient performance over a narrow range of data entropies. Efforts to

remedy this limitation are exemplified by the dynamic Huffman code [9-11] and Rice's

universal noiseless coding technique, which appeared in its early form in [12] and was gen-

eralized in [13-16]. The Rice algorithm is an easily implementable and adaptive scheme

that codes data close to the source entropy and can be extended to any entropy range, as

desired; it consists of multiple options, each targeted at an entropy range of approximately

1 bit/symbol. Extensions and modifications to the original algorithms have formed a basis

of data compression systems for a diverse set of applications [17-20].

In this publication, we explore the intricate relation between Rice's universal noiseless

coding technique and the optimal Huffman coder for rates higher than 1 bit/symbol. This

relation can be readily derived for sources having a Laplacian Probability Distribution

Function (PDF), which is a reasonable assumption among most imagery data, after a linear

prediction is performed on adjacent pixels. For other types of PDFs the relation between

the coding technique and the Huffman coder is more obvious only after re-segmenting the

PDFs, as will be explained later.

A brief descriptiori of Rice's technique is given in the early part of the next section.



The relation betweenthe techniqueand the Huffman coderwill be exploredand validated

by computer simulation. Actual coding results on aerial imagerywill be given, alongwith

further investigation into the coder'sapplicability to other data sourceshaving a Gaussian

or a PoissonPDF.

2



II THE RICE ALGORITHM AND ITS PERFORMANCE

ON A LAPLACIAN SYMBOL SET

II.1 Rice's Universal Noiseless Coding Technique

To relate the Rice coding technique to the optimal Huffman code, a brief description

of the Rice coding scheme is given first. Interested readers are referred to [13-16] for

details. The coder, depicted in Fig. 1, consists of two separate functional parts: The

front-end pre-processor is a predictor followed by a symbol mapper, while the second part

performs the actual adaptive symbol coding. The function of the front-end pre-processor is

to decorrelate the incoming data stream by simply taking the difference between adjacent

data (other higher order predictor types can be implemented as well), and also to map all

difference values, positive or negative, to a sequence of non-negative integer symbols.

PREDICTOR
MAPPER

PRE-PROCESSOR

M JVARIABLE Y
LENGTH ,_
CODER

INFORMATION
CODER

Figure 1: Lossless Source Coder

The second functional block implements a variable length coder of multiple options,

each targeted for a different source entropy level. A more detailed structural diagram

is given in Fig. 2. Given a block of J input samples )( = xl x2 ... x j, the pre-processor

outputs J non-negative integer symbols 5_' = 51 52... 5.1, where n indicates n-bit quantization

levels. The codeword length for the J symbols is first calculated for each option, the coder

then selects the option which yields the shortest codeword. Of the multiple options, the

most basic is a Fundamental Sequence (FS) code Ca. For a non-negative integer symbol

si E S, S = {0, 1,2,...,2 '_ - 1}, ¢1 outputs i O's for this symbol and terminates with a l,



._" _-...T13"2.., ,TJ

- = 6_15_,.._J
_J PI:tE-PROC,ESSC_ i

-i __.. : __/

VARIABLELENGTHADAFrrlVE CODER

ID •
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Figure 2: The ¢1,k Coder Structure

as shown in the following:

¢1(_,)_--S_[i]- _ 1 (1)
i zeros

Thus, fs[i] is equivalent to a comma code for an ordered symbol Set, with the probability

_e-rank:i....... -_ ........... _ _: ' :: :

Po k Pl k P2 2 ... > PN, (2)

where

p, = prOb[s,l. (3)

Such ordering combined with the comma coding on the source symbol will give shorter

codeword lengths to more frequently occurring symbols. Functionally the mapper in the

4
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pre-processortries to map the prediction error into this orderedsymbol set sothat gj C S.

Coding of a complete $'_ block using the FS will give

¢1[_"] = f s[_] , f s[g2] * ... * fs[_j], (4)

where • means concatenation.

Other options, as denoted by el,k, belong to the split-sample coding scheme. If we let

_,_,k = mt * ms * ... mj (5)

denote the J sample sequence of the most significant n - k bit samples extracted from _'_,

and

l_k = lsbt * Isb2 * ... Isbj (6)

denote the corresponding sequence of the k least significant bit samples of $", then the

coded output from ¢l,k will be

n'k]• Lk. (7)

That is, the most significant n - k bits of symbol _i will be coded using the FS, while the

least significant k bits remain intact. The code-selection module shown in Fig. 2 selects the

option with the shortest codeword length. A binary ID specifying the option is attached in

front of the coded block for identification. By limiting the number of samples J in a block,

the coder achieves adaptability to scene statistics.

II.2 FS as a Class of Huffman Code

The superior performance of the FS, with an entropy range from 1.5 to 2.5 bits/sample

on test images, has triggered our interest in comparing it with the optimal Huffman code.

Due to its fixed structure of O's and 1, the FS presents itself as an ideal candidate for

infinite source symbols. One might wonder, under what conditions would the performance

of the FS code approach, or even be equivalent to, that of a Huffman code? Surprisingly,

a generic condition can be logically contrived, and has been derived earlier by Humblet [3]

and relaxed in [8]. We re-iterate the condition in Humblet's [3] work as:

Let p(.) be a probability measure on the set of non-negative integers. If there is a

non-negative integer rn such that for all j > rn and i < j,

p(i) > p(j) (8)



and
C_

p(i) > _ p(n), (9)
n=j+l

then a binary prefix condition code with minimum average codeword length for the alphabet

consisting of the nonnegative integers with the above probabilities is obtained by the following

procedure. Consider the reduced alphabet with letters O, 1,..., m + 1 whose probabilities are

p_(i) = p(i), i < m (10)

.m

p,(m + 1) = 1 - Ep(i). (11)
i=0

Then one can apply Huffman's coding procedure to this reduced alphabet. Denote by Cl(i)

and ll(i), respectively, the codeword and codeword length for letter i (Ca(i) is a sequence

of lx(i) binary symbols ), 0 < i < m + 1. From there, construct the codewords C(i) for the

orignal alphabet by

C(i) - C_(i) i <__m

C(i) = {Cx(m+ i),(i-rn- 1)*0,1},

where n*O denotes a sequence of n zeroes ....
= =_

(12)

i > m (13)

Both Rice and Humblet consider coding an ordered nonnegative integer symbol set, as

Eqs. (2) and (8) reveal. With the tlumblet condition in Eq. (9), the procedure in Eqs.

(10)-(13) constructs a Huffman code C(i) on this symbol set, which would be equivalent

to Rice's ¢1 code in Eq. (1).

II.3 FS Coding on a Laplacian PDF

How well would the FS coding perform on actual data? It depends on whether the data

under test satisfy the Humbler condition. We choose to investigate this issue on a set of

imagery data. Most imagery data are knownt 0 have high correlation between= adjacent

pixe!s. This correlation presents itself as redundant information. Therefore, in da_a com-

pression studies, the correlation is usually dealt with by pre-processing the data using a

prediction scheme. For a large percentage of image data, the statistics of samples after this

pre-processing resembles the Laplacian function. A set of typical aerial imagery is shown

in Fig. 3. A typical histogram, shown in Fig. 4, is obtained by taking horizontal differences
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Figure 4: Histogram of the Pixel Differences of Fig. 3(a)
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of pixel values onthe sub-image in Fig. 3(a). The histogram peaks at value 0 and decreases

steeply on both sides. The difference histogram for other images in Fig. 3 resembles Fig.

4, as well. It can be seen that these histograms can be reasonably approximated by a

Laplacian function, of the form_ ...........

p(x) = ae-"_ (14)
2

where a2a 2 = 2, with a as the standard deviation of the function.

Figure 5 shows a mapped conditional histogram generated from pixel difference values

predicated on a fixed value of a pred!ct0r (i.e._, t_he previous pixelvalue) _, _!n this_ case =

predictor value of 122 from Fig. 3(a). Recall that the mapping procedure performed 0h--

.... the pixel differences produces a sequence of symbols _l,--',$j which a_ rei_resented -by

non-negative integers.

When modeling the mapped pixel difference values (so that all symbols are non-negative

integers) as a Laplacian PDF, a slight modification is necessary to represent probability for

8
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Figure 5: Mapped Conditional Histogram of Pixel Difference from Fig. 3(a) with a Pixel
Reference of Value 122

non-negative integers:

a
p(i) =

A

where A, a normalization factor, is given as

A __

0 _< i _< N (15)

N

E ae-ai

i=O

a(1 - e -(N+l)a)
(16)

The parameter a of the Laplacian PDF determines the spread of the distribution and affects

the entropy measurement of a source symbol set characterized by the PDF. Its value thus

determines whether the FS coding of such source symbols will be an optimal Huffman

code. One can derive the lower bound of a, above which the Humblet condition holds.

Such a bound exists as (see Appendix A for details):

a > l°g(t2-t-_)

log e

,,," 0.4812118. (17)

9



Laplace PDF, a-0.4812
symbol entropy is:

expected code length is:

2.5118208

2.6180520

symbol no. list of prob. code vord
1 0.38196 11
2 0.23607 01
3 0.14590 101

4 0.09017 001
5 0.05573 1001

6 0.03444 0001
7 0.02129 IOOO1

8 0.01316 00001

9 0.00813 100001

10 0.00503 000001

11 0.00311 000000

12 0.00192 10OOOO1
13 0.00119 10000001

14 0.O0073 100000001

15 0.O0045 1000000001

16 0.00028 10000000001
17 0.00017 100000000001

18 0.00011 1000000000001

19 0.00007 10000000000001

20 0.00004 I00000000000001

21 0.00003 1000000000000001
22 O.00002 10000000000000001

23 O.00001 100000000000000001
24 0.00001 100000000000000(001
25 0.00000 10_1

26 0.00000 100000000000000000001
27 0.00000 1000000000000000000001

28 O. 00000 10000000000000000000001

29 0.0OOOO i000000_1

30 O. 00000 I00000000000_1
31 O. 00000 10000000000000000000000001

32 0.00000 10000000000000000000000000

Figure 6: (a). Huffman Code for a Laplacian PDF at a = 0.4812

The condition holds when a(N - 1) >> 0. The derived constraint on a can easily be

verified through the actual coding of a Laplacian PDF with the Huffman code, as illustrated

in Fig. 6. In Fig. 6(a), a Huffman code was generated with a = 0.4812; it is obviously not

an FS code, but in Fig. 6(b) with a = 0.4813, the same procedure generated the Huffman

code of a totally different structure. The transition into the highly structured FS code is

apparent when the above condition on a is satisfied. In both cases, the Laplacian PDF

is only printed to 5 decimal places in Fig. 6. As the value of a decreases, resulting in

higher symbol entropy, FS coding for the Laplacian symbol set gives performance much

less desirable, as the curve marked k = 0 in Fig. 9 reveals.

II.4 Split-Sample Coding and Re-segmentation of the PDF

Rice [13] observes that, for source data of entropy more than a few bits/sample, the least

significant bits are more randomly distributed than the higher order bits. He then proposes

the ¢1,k coding scheme to code only the higher order bits with the FS, and append the lower

10



Laplace PDF, a.0.4813
symbol entropy is: 2.5115266

expected code length is: 2.6176546

symbol no. list of prob. code vord
I 0.38202 1

2 0.23608 Ol

3 0.14589 001

4 0.09016 0001

5 0.05572 00001

6 0.03443 000001
7 0.02128 0000001

8 0.01315 00000001

9 0.00813 000000001

I0 0.00502 0000000001

Ii 0.00310 00000000001

12 0.00192 000000000001

13 0.00119 0000000000001
14 0.00073 00000000000001

15 0.00045 000000000000001

16 0.00028 0000000000000001

17 0.00017 00000000000000001
18 0.00011 000000000000000001
19 0.00007 0000000000000000001

20 0.00004 00000000000000000001

21 0.00003 000000000000000000001

22 0.00002 0000000000000000000001

23 0.00001 00000000000000000000001
24 0.00001 000000000000000000000001

25 0.00000 0000000000000000000000001

26 0.00000 00000000000000000000000001

27 0.00000 000000000000000000000000001
28 0.00000 0000000000000000000000000001

29 0.00000 00000000000000000000000000001
30 0.00000 000000000000000000000000000001

31 0.00000 0000000000000000000000000000001

32 0.00000 0000000000000000000000000000000

Figure 6: (b). Huffman Code for a Laplacian PDF at a = 0.4813

bits uncoded. This scheme is, in fact, a procedure which re-segments the PDF of the source

symbols into fewer regions, each representing a new symbol. With k split bits, we effectively

have 2 "-k new symbols in this reduced symbol set. To illustrate the effect of segmenting

a PDF into fewer regions, the k = 0 curve which represents the original Laplacian PDF

for 256 symbols in Fig. 7 is re-segmented into 128, 64, 32, 16 and 8 symbols, as equivalent

to splitting off 1, 2, 3, 4 and 5 least significant bits, referred to as the k bits in the figure.

Narrower curves representing fewer symbols are obtained by integrating the original PDF

over every 2, 4, 8, 16 or 32 or!ginal symbols. The newly generated PDF becomes more

steep and less smooth, as revealed in Fig. 7. The PDF for the reduced symbol set can be

derived mathematically by summing over 2k original Laplacian probability values p(i)'s as:

2k-1 N + 1

/k(J) = _P(i=2 k.j+m), jE(0, 2k 1)
rn=0

a e-_kJ(l - e-_k)

A 1 - e-_
(18)

11
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Figure 7: Re-segmented Laplacian PDF at Various Numbers of Split Bits k, from 0 to 5

The Humblet criterion for the reduced symbol set is

P'k(J) -> E P'k(m), g'- 2k 1
rn= j.-I- 2

where for convenience, we have assumed that N + i is of 2's power. Eq.

when (see Appendix B)

2 k- a > 0.4812118.

(19)

(19) is satisfied

(20)

Note the great similarity between this value and that of Equation (17). Equation (20)

immediately reduces to (17) when k = 0. As a decreases, resulting in a Laplacian PDF of

wider spread, coding the source symbol by FS no longer guarantees an optimal Huffman

code. However, a reduced symbol set, obtained by representing only the higher order

bits of the binary symbol representation, may still satisfy the Humblet condition as (20)

predicts. The codes resulting from this type of spilt-sample coding scheme may not equal

the Huffman code of the original symbol set. This subject will be explored after we first

provide some performance measure on the coding scheme.

12



II.5 Performance of a Split-Sample Coder on a Laplacian Sym-

bol Set

To compare the performance of a split-sample coder on symbols of Laplacian PDF with

an optimal Huffman code, one calculates three quantities: the source symbol entropy, the

average codeword length of the ¢1,k coder, and the average codeword length of a Huffman

code.

II.5.1 Symbol Entropy

Given the Laplacian PDF in (15), the symbol entropy is derived as:

N

HN_(i)] = -- _ p(i) log2p(i )
o

a a 2 [e-'_(1 --e -aN) Ne -'_(N+')"
= -log 2_+_-log 2e. [ _S__-eS- _ 1-e -a

(21)

Similarly, with the re-segmented PDF in (18), the symbol entropy of the reduced symbol

set can be derived as: (details are given in Appendix C)

N I

HN,[p_(j)] = -- _f_P'k(j) logsP_(J)
o

a 1 -- e -ask

= -l°gsA-I°gs 1-e -a

a 2 1 -- e -ask

+ A 1 - e-" 2k l°gs e. B, (22)

where

e-,,2_'(1- e-,,(N'+l)+,,_k) (Y2--._J._ 1)e-"(-'v+')
B=

(1 - e-'_sk)s 1 - e-ask

Again, one can verify that when k = 0, Eq. (22) reduces to gq. (21).

(23)

13
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Figure 8: Effect of Sample-Splitting on Symbol Entropy and Codeword Length. S: Symbol

Entropy, K: Split Bits, O: FS Codeword Length, X: Split-Sample Codeword Length

II.5.2 Average Codeword Length for Split-Sample Coding
: :

The expected codeword length for split-sample coding consists of two terms: the FS

coding length of (j + 1) bits for the (j + 1)th symbol in the distribution, and k bits due to

uncoded bits. This can be written as:

N+I

E[p_(j)] = _ (j+l).p'k(j)+k for jE(0, 2k 1)
j=o

1 "e-0(l - e-0N') --N'e-#(N'+I)], (24)
= 1 + k + 1 - e-_Uv'+l) [ T'--'e -'75

where

fl=a2 k and N' N+I
=- 2k 1.

In Fig. 8, the effect of splitting samples is plotted at several split-bit k values. The

symbol entropy value, marked as 'S', decreases as more bits are split off due to the narrow-

ing of the re-segmented PDF. Coding using only FS on the re-segmented Laplacian PDF

14
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Figure 9: Coder Performance of Split-Sample Coding Technique on a Laplacian PDF

is seen to generate a shorter average codeword, marked as 'O' in the graph. The PDF

becomes narrower as k increases, until it reaches a plateau, while the symbol entropy keeps

decreasing. The net effect, marked as 'X' in the graph, is a concave curve with a smooth

valley. The graph indicates that the optimal choice of k can have more than one value.

Here both k = 2 and k = 3 yield similar coding performance.

The optimal coverage of split-sample coding at various k values is summarized in Fig. 9.

Each curve corresponds to a fixed k value. Obviously, each is optimal in an entropy range

of approximately 1.0 bit/sample. Thus, an adaptive coder with these options can cover a

wide entropy range by varying k. As entropy traverses from the high end of 7.5 bits/sample

to the low end, the coder will first select the k = 5 curve until at about 6.5 bits/sample,

where k = 4 will dominate the performance. Figure 9 shows that coder performance shifts

from one crossover point defined by two adjacent k values to another, achieving almost the

ideal performance defined by the diagonal line. It should be noted that the 'X' curve in Fig.

8 is a vertical cross section of the various k curve data at symbol entropy of 4 bits/sample

15



Figure 10: Huffman CoderPerformanceon a Laplacian PDF

from Fig. 9.

II.5.3 Average Codeword Length for Huffman Codes

A Huffman codebook is only optimal for given data source statistics. With each dif-

ferent value of a for the Laplacian PDF, a new Huffman code has to be generated. The

performance of a set of 50 Huffman codebooks over an entropy range is shown in

Fig. 10 for Laplacian PDFs of varying parameter a. Comparing Fig. 9 with Fig. 10, one

easily recognizes the effectiveness of the split-sample coding scheme. Obviously, the major

advantage of the split-sample coding technique is its orderly code structure, which greatly

simplifies both coding and decoding procedures and reduces hardware design complexity.

16



III RELATION BETWEEN THE SPLIT-SAMPLE CODE

AND THE HUFFMAN CODE

It is evident from Figs. 9 and 10 that the performance of the split-sample coder ap-

proaches that of the Huffman code for a Laplacian symbol set. The relation between the

split-sample Cx,k code and a Huffman code can be established by examining the binary

code tree structure of both.

III.1 The Binary Code Tree Structure of ¢l,k

In split-sample coding of a symbol, one has the option of attaching the uncoded k split

bits either to the front or the rear of the coded bits for the n - k most significant bits. Both

schemes result in the same performance and will not cause difficulty in decoding. However,

they represent totally different binary code trees, one of which is an impossible Huffman

tree structure for a Laplacian symbol set.

III.l.1 The Impossible Huffman Tree Structure for ¢1,k

The analysis is best understood by an example, such as the ¢1,1" The Laplacian symbol

set S has elements {So, Sl,...,sN} representing integer symbols 0, 1, 2, ... , N. The ¢1,1

binary code tree for a 16-symbol set, with a single least significant bit attached to the end

of the FS code of the 3 most significant bits will have the structure shown in Fig. 11. In

order for this tree structure to also represent a Huffman code tree, every pair of symbols

must first be grouped to form a level-1 parent node. Then the Humblet condition must

exist at this level to ensure that the FS construct for the symbols exists at this level.

Let the probability at node level k - 1, P_-I, be written from Eq. (18) as

2k-i_I

Pk-l(J) ---- _ p(i = 2 k-' . j + m), j E (0, N + 1
2k-1

rn--_O

a e-_2k-13(1 - e -_2k-1)

A 1 - e -_

1)

(25)

Grouping of all adjacent pairs of symbols in Fig. 11 before applying the Humblet condi-

tion at level 1 to construct a Huffman code tree requires that the parent node probability

be larger than the probability of the first symbol at level 0, the leaf nodes. This implies
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Figure 11: The ¢,,,Binary Tree for a 16-Symb01 Set, with Split Bits Appended at the End

of the FS Code

that we must have

Or, equivalently,

P'k-l(J) + P'k-,(J "4-1) > p__l(0). (26)

e-"j2*-_ (1 + e-"2.-_) > 1. (27)

Equation (27) is violated when j > 2 at k = 1. Therefore, the tree structure shown in Fig.

11 is not a Huffman code tree for ¢1,1.

III.1.2 A Possible Huffman Tree Structure for ¢1,k

Can a Huffman tree structure be represented by the ¢1,k code construct? If one starts

with the simplest case of k = 1, and works from the root of a Huffman code tree while

trying intentionally to reach the ¢1,1 construct, one arrives at the tree in Fig. 12 for a

16-symbol set. The binary tree produces codewords at leaf nodes exactly the same as ¢1,1

codes for non-negative integers except for two observations. First, the ordering of the two

18
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Figure 12: The ¢1,1 Binary Tree and Codewords for a 16-Symbol Set, with Split Bits
Attached in Front of the FS Code

codewords of the same length is the reversed order of the ¢1,1 codewords for the two integer

symbols. Second, the last two symbols have to be appended with a '1' to become the ¢1,1

codewords. Similarly for k = 2, we have a tree structure in Fig. 13. Again, for the last four

codewords to become ¢1,2 codewords of the last four symbols, we must reverse the ordering

of symbols at the same length and append an extra '1' to the codewords.

One immediately recognizes that such a tree structure represents a most efficient (re-

dundancy = 0 bit/symbol) Huffman tree when equal probability weights are assigned to the

two branches emanating from a common parent node. Thus, the expected codeword length

equals the input entropy and can be easily calculated for an infinite staircase geometric

symbol set at k = 2, as

1 1 1 1 1 1 1 1

EH = (g+g+g+g).3+(]--_+T_+T_+]-_).4+...

= 4 bit�symbol. (28)

Any large symbol set which does not have a PDF of similar geometric form will still have

19
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Figure 13: The ¢1,2 Binary Code Tree and Codewords of a 16-Symbol Set

an integer expected codeword length for ¢1,k codewords, as long as the probability sum of

every 2k symbols equals i ] 12 _ 4 _ 8 .... For a Laplacian symbol set, this be_:ornes -_:

e_,2_ = -.1 (29)
2

Could this binary tree be the actual Huffman tree for a Laplacian symbol set? This is

explored next.

Iii.2 When a ¢1,k Tree Equals a Huffman Tree

The tree structures in Figs. 12 and 13 suggest that each symbol should be paired with

a symbol at a separation of 2 k distance when constructing a Huffman code tree of the same

structure as the Cz,k code structure. This pairing imposes a constraint on the Laplacian

symbol set. To show that there exists some modified Laplaciaa pDF whose Huffman code

is the ¢1,k code, we first state the following properties:

Property 1' Let _]t, _]t and _r represent different sums of the symbol probabilities de-
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fined over a Laplacian PDF given in Eq. (15), where k is a positve integer (the same

as the split-sample bits):

N-(k+l)2k-1

E, = _ p(i) (30)
i=N-(k+2)2 k

N

_,t = y]_ p(i) (31)
i=N- (k+l)2k+l

N-(k+ l )2k + l

F,r = _ p(i) (32)

i=N-(k-b2)2k+2

for0<i<N, thenat e -_2k=!
2_

El > E, > E,-. (33)

Property 2. Given Property 1 at a specified k value, and define St+, St+, _+ over

the same Laplacian PDF as:

N-(k+l+l)2k-I

E,+ = _ p(i) (34)
i=N-(k+2+g)2 k

N

_,+ = _ v(i) (35)
i=N-( k + l +£)2k + l

N-(k + l +g)2k + l

E,+ = _ p(i) (56)
i=N-(k+2+g) 2k+2

for a positive integer g, then

St+ > E,+ > E,-+. (37)

The properties are proved in Appendix D. A graphical description of each summation

is given in Fig. i4(a). If one partitions the symbol set 7' into segments of 2 k symbols and

numbers the segments from the end of the symbol set as depicted in Fig. 14(a), obviously

_t is the symbol probability sum of the k + 1 segments. Now define _,,, as the probability

sum of the the (k + 2)th segment,

N-(k+l)2 k

Era= _ p(i), O < i < N, (38)
i=N-(k+2)2k+l
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Figure 14(a). Definitions of St, _r, _m, El for k = 2

then Property 1 establishes that the probability sum, _t, of the (k + 1) segments is very

close to the probability sum, _m, of the (k + 2)th segment, whose value, of course, lies

between _t and _.

Property 2 extends the definition of _t in Property 1 to include more 2k-symbol

segments. It guarantees that the probability sum of symbols in the k + 1 + _ segments

is bounded and is very close to the probability sum of the symbols in the next segment.

These two properties will be used to establish the equivalence of a split-sample code to the

Huffman code of a modified Laplacian set.

There exist various ways of defining this modified Laplacian set. One such probability

assignment which simplifies later derivation and leads to our goal is to impose a slight

deviation to the original probability p(i) of symbols in the k + 1 segments of S in Fig.

14(a), while keeping the same values for symbols in other segments. Thus, as shown in Fig.
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Figure 14(b). Laplacian Set S and the Modified Laplacian Set T

14(b), we define t5(i) as the symbol probability for T as

p(i)

p(i - 2 k) + _. e -"j
/5(0

0

0 < i < N- (k + 1)2 k

N-(k+l)2 k+l <i<N-k2 k

j=i-(N-(k + 1)2 k + 1)
N - k2 k < i < N

(39)

under the constraint that the symbol probability sum over the (k + 1)th segment equals

_t. The deviation from the original probability, 5, is obtained from

1 - e -a2k

Et-Em = '_" l-e-" (40)

One can verify that the symbol probability defined above over the (k + 1)th segment of T

provides, between symbols within this segment, an exponential relation of the form

_(N-(k+l)2k+l+j)=/5(N-(k+l)2k+l).e -aj, j=0,...,2k-1 (41)

the same as what is between symbols in S. When e -32_ - 1- i, one can easily show that

}2m > Et, therefore 5 is negative.

With the above definition, we now state the following:
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Theorem 1 The _bl,k code of symbol set T is its Huffman code at e -_2k - !

The proof is given in Appendix E. This theorem establishes the equivalence of the split-

sample code to the Huffman code of a modified Laplacian symbol set at a particular symbol

entropy level dictated by e_2k = ! One should be aware that the modified Laplacian symbol2"

set which satisfies our goal is not unique. A slight variation in assigning the probability

values to the symbols in the (k + 1)th segment of T results in a different set. The closeness

of the modified Laplacian PDF to the original Laplacian PDF is examined in the following

section.
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III.3 Simulation and Discussion
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Figure 14(c). PDF of a Laplacian Set of 256 Symbols

Properties 1, 2 can be easily verified for a Laplacian symbol set. The symbol entropy

and the expected split-sample codeword length can be calculated using Eqs. (21) and (24).

The values are listed in Table 1 for a set of 256 symbols. One notices that, in this example,

the expected codeword length is an integer when k < 5. For this range of k values and

8-bit quantization, the aN value is so large that e -_'N approximates zero. Thus Eq. (24)

can be simplified to

e-_

E[p_(j)] _, l+k+ 1-e-_'

= 2 + k. (42)

At k = 6, Theorem 1 still holds, but the expected codeword length is no longer an integer.
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Figure 14(d). PDFs of a Laplacian Set and of a Modified Laplacian Set

For a 256-symbol modified Laplacian symbol set T, the PDF for e -_k = t at k = 5 is
2_

given in Fig. 14(c). One notices the apparent difference between this curve and a normal

Laplacian distribution. However, as Fig. 14(d) shows, if N is allowed to become a larger

number, for instance 1023 for 10-bit data, the PDFs for this 1024-symbol modified Laplacian

set T and for a normal 256-symbol Laplacian set S are indistinguishable at the same

specified Laplacian parameter a. Theoretically, the two curves in Fig. 14(d) differ only

minimally by a normalization factor of (1 - e-"(g+l)), as defined in Eqs. (15) and (16).

The (k + 1)th segment of set T in Fig. 14(c), which occurs at the 65th symbol of the

256-symbol set (256 - (5 + 1) • 25 + 1) has been pushed farther away to the 833rd symbol

of the 1024-symbol set (1024 - (5 + 1). 2 s + 1). Its value diminishes exponentially fast and

lies below 10 -s. The last k2 _ = 160 symbols have 0 values and are plotted as 10 -11 for

visualization on the logarithmic plot. One will, in fact, use the first 256 Huffman codes out

of the 1024 Huffman codes constructed for this 1024-symbol set T to code the 256-symbol

set S, whose PDF is practically equivalent to those of the set T.

To summarize, we simply state that the ¢1,k codes are a set of Huffman codes at integer

expected codeword lengths for an infinitely large modified Laplacian symbol set and for

an infinitely large staircase geometric symbol set. One uses these codewords to code a

Laplacian symbol set of limited elements. Since ¢1,k coding is a top-down procedure,

meaning a codeword can be readily derived by knowing the symbol's order in the set, no
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Split Bit Symbol Entropy Expected CodewordLength
k Bit/Symbol Bit/Symbol

0 2.0000 2.0000

1 2.9787 3.0000

2 3.9733 4.0000

3 4.9719 5.0000

4 5.9713 5.9998

5 6.9710 7.0040

6 7.6117 7.7333

Table 1: Symbol entropy and ¢1,k expected codeword length for a Laplacian symbol set of
256 elements at e -_2k = !

2

codebooks need to be generated before actual coding takes place.

IV PERFORMANCE ON AERIAL IMAGERY

A split-sample coding scheme has been simulated on the VAX computer. A pre-

processor was used which simply takes the previous pixel as the prediction value. A test

set was selected, shown in Fig. 3, consisting of nine 128 x 128 pixel images. The top row

consists of 8-bit, 3m ground resolution images whose differential entropy measurement is

the smallest of the image set. The middle portion of Fig. 3 has 8-bit, lkm ground resolution

images. Fig. 3(f) is the infrared version of Fig. 3(e). These three images have a medium

level of differential entropy. The last row shows 12-bit, 20m ground resolution images, with

a much higher differential entropy.

To adapt to the change in scene statistics, an optimal choice of the number of the

split k bits is selected and coded, using 3 bits as option identification for every block of

J = 16 input samples. A reference signal of the first pixel value in each scan line is also

retained. The overall system coding performance, including the overhead information of

approximately 0.32 bit/sample, is plotted in Fig. 15, against the differential entropy. The

closeness of these results to the ideal curve validates the effectiveness of this coding scheme.
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V SPLIT-SAMPLE CODIN_ ON: OTHER SOURCE

SYMBOL PDFs

Having observed the effectiveness of the split-sample FS coding on symbols with Lapla-

clan PDF, one wonders if the same scheme can be as effective if applied to other types

of PDFs. Two other types of PDFs are considered: a Gaussian PDF, due to its frequent

usage in signal modelling, and a Poisson PDF, which is often used to model the hit-rate of

high-energy photons in NASA's cosmic ray observations.

V.1 Gaussian PDF

The Humblet condition stated in (8) and (9) demands that the symbol PDF decrease

monotonically and fast. For a Gaussian PDF, this condition is only met when the parameter

cr is small, resulting in a very steep Gaussian PDF. For a Gaussian PDF of the form:

• - " 1 12

p(i) - v/_crAge-_, 0 < i < N (43)
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where Ag, the normalization factor is given as

N 1 ,_

Ag = _ x/_. e-_-r
i----O

we can derive the range of _z of the PDF to satisfy the Humblet condition (see Appendix

F). Without splitting bits, that is, when k = 0,

1

e-_ >_ Vf2--_aA9- 2, (44)

whereas for k > 0

The overall performance of split-sample FS coding on a Gaussian PDF is given in Fig.

16. When compared with Fig. 9, this coding scheme offers comparable coding rates, though

the coding rate is slightly higher for a Gaussian source than for a Laplacian source. It is

noted that for k = 0, the source entropy must be below 0.86 bit/sample for the FS coding
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to be the optimal Huffman code, as compared with 2.51 bits/sample for the Laplacian PDF

(see Fig. 6); however, when more bits are split from the symbols, the Gaussian PDF of the

reduced symbol set more closely resembles the Laplacian PDF, as can be seen in Fig. 17.

V.2 Poisson PDF

The Poisson PDF, often used to characterize the number of random discrete hits

within a given collection time r and a given average hit rate of A, is given by:

(At)' __ (46)
p,(i)- :., e .

The Poisson PDF is very narrow, and the distribution skews towards i = 0, when )_r is

small. It resembles a Gaussian PDF when _r becomes large. No closed form mathematical

condition can be derived with the PDF to predict when the Humblet condition is satisfied.

However, the split-sample coding performance is very close to that of a Gaussian PDF, as

shown in the simulation results in Fig. 18.
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VI DISCUSSION

To summarize, we state that the ¢1,k codes are a set of Huffman codes with expected

performance centered at integer codeword lengths for an infinitely large modified Laplacian

symbol set. For real world applications for which symbol distributions are well modeled as

Laplacian, the practical results are both simple and profound: The best code to use at each

integer entropy value (k + 2) is the corresponding ¢1,k code. Further, the codeword for each

symbol is completely specified by knowing its order in the set. No codebooks are needed.

Clearly, the implementation of any individual split-sample coder is extremely simple, in

both software and hardware. After all, the coding of an N-bit sample requires no more than

splitting off k least significant bits and then replacing the remaining n - k most significant

bits with i binary zeroes and a 1, where i is the integer value of the most significant bits.

This simplicity extends to the implementation of adaptive coders built around these split-

sample modes as options to choose from. Yet as we have shown, this simplicity does not

sacrifice performance.
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Split Bit Symbol Entropy Expected Codeword Length

k Bit/Symbol Bit/Symbol

0 2.0000 2.0000

1 2.9787 3.0000

2 3.9733 4.0000

3 4.9719 5.0000

4 5.9716 6.0000

5 6.9715 7.0000

6 7.9715 8.0000

7 8.9714 9.0000

8 9.9714 10.00()0

9 10.9714 11.0000

10 11.9711 11.9998

Table 2: Symbol entropy and ¢1,k expected codeword length for a Laplacian symbol set of

16,384 elements at e -_2k = !
2

Two different hardware implementations are being developed as custom CMOS VLSI

chip sets. The Jet Propulsion Laboratory is implementing a mission specific coder, whereas

the Goddard Space Flight Center (GSFC), in collaboration with the University of Idaho,

is implementing a multi-mission encoder/decoder chip set, capable of broader applicability.

Both implementations select code options over blocks of 16 samples.

The 1.0#m GSFC chip set is designed to operate at up to 20 million samples/see when

used on 14 bits/sample data while adaptively providing coding performance close to the

local entropy over an entropy range of from 1.5 to 12.5 bits/sample.

To provide the flexibility to support broad mission requirements, the GSFC version will:

• allow the use of an externally supplied predictor;

• allow the use at an externally supplied pre-pr6cessor;

• operate on data quantized from 4 to 14 bits/sample;

• optionally provide automatic insertion of reference samples between data blocks.

This coder implements twelve options: one default in addition to eleven split-sample

modes. The performance Of the coder on a Laplacian symbol source of 14 bits/sample

quantization is listed in Table 2, for input entropy values at e "_2k -- ½, k =_ 0,..., 10.
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APPENDICES

A Derivation of the Humblet Condition on a Laplacian PDF

To satisfy Equation (9) for all nonnegative n = j + 1 values, it suffices to show that (9)

holds for j = i + 1. Therefore we can rewrite (9) as

N

p(i) > _ p(n). (A.1)
n=i+2

Substitute the definition in (15) for Laplacian PDF and (A.1) becomes

N
a ai a

_e- >_ _ e-"". (A.2)
n=i+2

Carrying out the summation in (A.2), we further reduce it to

1 -- e -a -- e -2a >_ --e -a(N-i+'), 0 < i < N (A.3)

Since an exponential function is always nonnegative, then (A.3) is guaranteed as long as

Solving for a in (A.4), we arrive at

which is (17) in this publication.

1-e-_--e-2__>0. (A.4)

a > l°g(1 2-_) (A.5)
- log e
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B Derivation of the Humblet Condition on a Re-segmented

Laplacian PDF

If we substitute the re-segmented Laplacian PDF of (18) in (19), we have

a e-a2kJ(1 -- e -a2k)
-- °

A 1 - e-"

a 1 -- e -a2k N'
:_ -- , _ e -2kam.

- A 1-e -_ ,,,=j+2

The summation in (B.1) is equal to

e -2k_(j+2)[1 - e -_k'(N'-j-2)]

1 -- e -2ha

where N' = _ - 1. After rearranging terms on both sides of (B.1), we obtain

1 - e-2." - e -2.÷'" >__-e -2_"(-_-+d-j-2).

(B.1)

(B.2)

Again, (B.2) holds when the left side of (B.2) always exceeds 0, that is

1 - e -2k" - e -2k+_" _> 0.

Solving for 2 k • a, we obtain

log(2k.a>
- log e

which is Equation (20) in this publication.

(B.3)

(B.4)
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C Derivation of Symbol Entropy for a Re-segmented

Laplacian PDF

Equation (18) gives the re-segmented Laplacian PDF, which can be rewritten as

(C.1)

where/3 = a. 2 k and _ = -_. '-_-_1-e -a "

Using the entropy derived for the Laplacian PDF in (21), one can readily write down

the following form as the entropy for the re-segmented Laplacian PDF:

__ f12 [e-___(1 _ e-_N') N,e-_(N'+I)HN'[P'k(J)]=--l°g2 +-F --l°g2 e " (1 -----e---'_)2 1--e-_ 1" (C.2)

Now, replacing/3 and F in (C.2), it immediately reduces to (22) and (23).
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D Proof of Properties 1 and 2

For a Laplacian symbol set defined in Eq. (15), the various sums are:

N-(k+l)2k-1

Et = p(i)
i=N-(k+2)2 k

a e-_[Ar-(k+2)2_](1 - e -_2_)

A 1 -e -a '
(D.1)

Et

N

p(i)

i=N-(k+l)2k+l

a e -"[N-(k+l)2k+l](1 -- e-a(k+l)2k)

A 1 - e -"
(D.2)

Er

N-(i+l)2k+l

p(i)
i=N-(k+2) 2k+2

a e -a[N-(k+2)2k +2](1 - e -_2k)

A 1 -e -a
(D.3)

We need to show

Z]t > _, > Z]r, (D.4)

which is equivalent to

e-"(2k +1) (1 - e-"(k+l)2_ )
1.0 > > e -2a.

1 - e -a2k

Substituting e -"2_ - 1_ the above equation becomes

1.0 > e-"(1 -(_)1 k+l)> e-2a

(D.5)

(D.6)

The left side of the relation always holds because 1.0 > e-" > 0.0, and 1.0 > 1.0 - (½)k+x >

0.0, therefore we only need to show that the right side of the above equation is valid.

Equivalently, we must prove

1 )k+l e-a
1 -(_, >

is valid for all integer k > 0. We will use induction for this purpose.

e-,2 k - ! Eq. (D.7) is valid. Now we need to prove that

If 1 -(1)k+l > (1)2-_ ' for any k > 1

Then I-(_) k+2 >(1)2--_vr.

(D.7)

At k = 1 and

(D.S)

(D.9)
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1

1_k+1 and v = (½)V, from (D.8)Let u = (_j

1 -u > v. (D.10)

Taking the square root will keep the relation because both u and v are positive, that is,

(1 - u)½ > v½. (D.11)

Using binomial series expansion,

(1-u)_ ,_ 1- -_u- -_u ....

1

< 1-_u. (D.12)

Therefore we have

- 2 u > (1 - u)½ > v½, (D.13)1

which is Eq. (D.9). This proves Property 1. Similarly, from the definition of _t+, _t+, E_+,

we can write-

El+ --

N-(k+l+t)2k-1

E p(i)
i=N- (k+2+t) 2k

a e-"[N-(k+2+m*l(1 -- e -_2k)

_4 1 -- e -a

(D.14)

_t+ -"

m

N

y_ p(i)

i=N-(k+l+O2k+l

a e -atN- (k+l+t)2k+ll (1 -- e -"(k+l+m_)

m 1 -- e -a

(D.15)

We need to show

which is equivalent to

Er+ _-

N- (k-l- 1+t)2k-{-1

p(i)
i=N-(k+2+t)2k+2

a e-otN-(k+2+m_+ 2]( 1 -- e-a2k )

A 1 - e-"

_t+ > _t+ > _+,

e-"(2_ +1)(1 - e-a(k+l+02k )
1.0 > > e -2a.

1 - e-"2h

(D.16)

(D.17)

(D.18)
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The left side holds following the samereasoningusedearlier. The right side is equivalent

to proving

1 -(l-) _+l+t > e-" (D.19)
2"

for a positive integer_. SinceEq. (D.7) holdsunder Property 1, onecan easilywrite

1- (_)k+l+t > 1- (_)k+l >e-", (D.20)

which establishesProperty 2.

:U .. .:
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E Proof of Theorem 1

To construct the Huffman code for the modified Laplacian symbol set defined by Eqs.

(39) and (40), we start pairing the two symbols with the smallest probabilities. Because

the last k2 k symbols have 0 probability value, they can be paired in arbitrary order. One

such order is to start with the last symbol in the first segment, i.e., the segment at the end

of the symbol set, and pair it with the last symbol in the second segment. This procedure

continues until reaching the (k + 1)th segment in Fig. 14(b). The definition of T assigns

/5(i) to each symbol in this segment in an exponentially decreasing way, the same as for

a Laplacian set. Because all the Huffman tree nodes resulting from the last k2 k symbols

have 0 probability value, all symbols in the (k + 1)th segment will be paired in the same

fashion. This results in 2 k nodes with node values the same as the symbol probabilities in

the (k+ 1)th segment. These nodes preferably will pair with the 2 _ symbols in the (k+2)th

segment. To deduce the desired relation, we first prove two lemmas.

Lemma 1 /5(g-(k+2)2 k+l+j)>_5(N-(k+l)2 k+l+j)>p(g-(k+2)2 k+2+j),

for0_<j<2 k-1

Lemma 2 _(N-(k+l)2k+l+j)+_(N-(k+2)2k+l+j)=_(N-(k+3)2k+l+j)+Se -_j,

for0__j<2 k-1

Essentially, Lemma 1 sets upper and lower probability bounds for the jth symbol in

the (k + 1)th segment of T, respectively, by the jth and the (j + 1)th symbol probability

in the (k + 2)th segment. Lemma 2 extends the relation between symbols in the (k + 2)th

segment and nodes resulting from pairing all symbols in the k + 1 segments, to the symbols

in the (k + 3)th segment and the newly formed nodes. The proof is as follows:

Proof of Lemma 1: The left-side inequality is immediately established from the defini-

tion in Eqs. (39) and (40) and the fact that 6 is negative. For the right-side inequality, we

need to show that a single symbol which contradicts the inequality will violate Property

1, and thus is not allowed. We will outline the proof for the case of the symbol when j = 0.

A similar procedure can be applied to cases when 0 < j __ 2 k - 1.

If at j = 0, we have

/_(N - (k + 1)2 k + 1) < p(N- (k + 2)2 k + 2), (E.1)
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then multiplying both sidesby e-a will give

IS(N-(k + 1)2 k + 1).e -_ <_p(N-(k + 2)2 k + 2).e -a, (E.2)

which from Eq. (41) is equivalent to

/5(N - (k + 1)2 k + 2) _< p(i- (k + 2)2 k + 3). (E.3)

Continue multiplying by e-" on both sides and making use of Eq. (41), we will have

_(N-(k+l)2k+l+j)<p(N-(k+2)2k+2+j), 0<j<2k-1. (E.4)

Summing both the left and right sides of the above equation for the 2 k j values, we arrive

at

<_ _', (E.5)
t T

which contradicts Property 1.

Proof of Lemma 2: From the definition of T, we can write

iS(N- (k + 1)2 k + 1 +j) + /3(N-(k+2)2 k+l+j)

= /3(N-(k+2)2 k+l+j)+Se -"J+/5(N-(k+2)2 k+l+j)

= 2/5(g-(k+2)2 k+l+j)+Se -"j

= 2/3(N- (k + 3)2 k + 1 + j)e -"2k + 5e -"j

= jS(N - (k + 3)2 k + 1 + j) + 5e -"j, (E.6)

where we have used the fact that e -'_k = !
2"

From Lernma 1, the 2 k nodes resulting from pairing symbols in the (k + 1)th segment

with previous nodes will pair with symbols in the (k + 2)th segment in an orderly way.

The newly formed nodes, from Lemma 21 hold a relation to the symbols in the (k + 3)th

segment similar to that between the symbols in the (k + 2)th segment and the old nodes.

Due to Property 2, the jth new node value is also bounded above and below, respectively,

by _(N-(k + 3)2 k + 1 +j) and fi(N-(k + 3)2 k + 2 +j), when 0 < j < 2 k- 1. Therefore, the

same pairing procedure will be followed for the (k + 3)th segment and will continue until

all symbols are paired. This results in a Huffman code structure for the modified Laplacian

set T.
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F Derivations of (44) and (45)

The Gaussian PDF given in (43) generally does not satisfy the Humbler condition in (9)

due to its zero derivative at the origin. However, when the a value is small or when split-

sample coding is applied, the PDF becomes sufficiently steep that the Humbler condition

is possible. To derive the constraint on cr and k for Gaussian PDF, we first prove that it

suffices to apply (9) when i = 0 to guarantee cases when i > 0; then we explicitly derive

the constraint for i = 0.

Applying (9) to Gaussian PDF in (43) and letting j = i + 1, we obtain

_,5
• .- _ (F.I)e2_'Z'r>e _" +e- _,, + +e- ,

which can be simplified to

-- _ /,,-2 _i2

1>e-2,,, +e 2., +...+e-_. (F.2)

There are different numbers of terms in (F.2) when i has different integer values. Since the

first term on the right side of (F.1) is always greater than the following N - i - 2 terms,

(F.2) is guaranteed when
4i+4

1 > (N- i- l)e- _.-Tr (F.3)

is valid. Noting that the exponential term in (F.3) is larger when i = 0 than when i > 0,

and that there are more terms of this form when i = 0, we conclude that as long as (F.3)

holds for i = 0, it is also valid when i > 0. Therefore, we only have to apply the Humblet

condition to the Gaussian PDF and derive the constraint on a when i = 0.

Instead of working with (F.3) directly, applying (9) and setting i = 0, we can address

the Humblet condition in the following easier way:

p(0)> 1- p(0) - p(1). (F.4)

Using the Gaussian PDF in (43), we obtain

(F.5) can be written as

1 1 1
>1

x/_o'ag - v/_aag v'r_aag

1

e-_ >_ v/_raAg- 2,

1

e- _--';_". (F.5)

(F.6)
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which is (44).

For the reducedsymbol set resulting from k split bits, applying (9) and rearranging

terms, we obtain

1 4 (2k--l) 2

x/_aAg2(1 + ¢-2.-;_" + e-2.--;z +... + e- 2_'-5_-) + p_:(1) > 1, (F.7)

since the second term p_,(1) is smaller than the first one, a more strict condition of (F.7)is

,
1 2(1 + ¢-_--_ + e-2_-'z +... + e- 2_- ) > 1, (F.8)

x/_crAg

which can be written as

c-=_-;_'+ +...+e- _- >
x/_aAg - 2

(F.9)

the same as (45).
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